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Do electroweak interastions imply six extra time 
dimensions? 

J G Taylor 
Department of Mathematics, King’s College, University of London, The Strand, London 
WCZR 2LS, UK 

Received 1 August 1979 

Abstract. The signature of the metric of extended space-time is investigated in order that 
spontaneous symmetry breaking is allowed in electroweak interactions embedded in 
SU(211). The only possibility appears to be (+---++), in the case of one lepton. Each 
additional lepton (or pair of flavours) adds an extra pair of time-like dimensions provided 
each such lepton has mass less than 53 GeV. 

There has recently been an upsurge of interest in field theories in higher space-time 
dimensions, both from the viewpoint of the unification of general relativity and 
Yang-Mills theories (Cho 1975, Tabensky 1976, Macrae 1978, Mecklenberg 1978) 
and for extended supergravity (Scherk 1978 and references therein). Even more 
recently (Ne’eman 1979, Fairlie 1979, Taylor 1979a, Dondi and Jarvis 1979) a similar 
framework has been used in attempts to embed the electroweak theory of Salarn (1968) 
and Weinberg (1967) in the graded algebra SU(211). Since SU(211) is the smallest 
simple graded algebra containing SU(2) x U(1) a prediction of the Weinberg angle 8, 
should be possible (Ne’eman 1979, Fairlie 1979) The Higgs scalar fields are described 
by the extra components of the Yang-Mills gauge field in the higher dimensions, the 
scalar self-interaction term arising from the Lagrangian quadratic in the Yang-Mills 
field strengths in the usual fashion (Cho 1975, Tabensky 1976, Macrae 1978, 
Mecklenberg 1978). 

Unfortunately none of the attempts made so far has been completely successful due 
to various faults. Thus Ne’eman (1979) failed to gauge the theory without violating the 
spin-statistics theory or include the Higgs scalars satisfactorily, Fairlie (1979) could only 
incorporate electrons but had the wrong sign for the mass term for the Higgs scalars (the 

disease’), Taylor (1979b) achieved inclusion of more than one lepton but still 
had the (mass)2 disease, and Dondi and Jarvis (1979) failed to have the traditional 
vector meson mass generation mechanism at all, so no lepton masses. No reason was 
given for the rather ad hoc choice of gauge field structure in these references. 

The central feature of all these results was that the SU(2) x U(1) electroweak theory 
embedded in SU(211) must have 8, = 30”, in good agreement with experiment (Salam 
1979). It was also possible, on continuation in the mass of the Higgs scalars, to predict 
(Taylor 1979a) that the mass of the Higgs scalar had to be 150 GeV and that any leptons 
have to have a maximum mass of 53 GeV. The attractive character of these aspects of 

0305-4470/80/051861 I- 06$01.50 @ 1980 The Institute of Physics 1861 



1862 J G Taylar 

the theory indicated that it would be rewarding to construct a satisfactory gauge theory 
of graded SU(2)l)  without the above-mentiontd defects. 

One step towards this was taken (Taylor 1979b) with a derivation of the original 
ansatz (Fairlie 1979) for the gauge potential from the requirement of gauge invariance 
of the graded algebra, together (Pickup and Taylor 1980) with further restriction on the 
nature of the gauging. However, the (mass)2 disease still persisted. In this paper we 
show how this disease can be cured completely by choosing the extra dimensions of 
space-time to be time-like, rather than space-like. Thus the space-time extension in 
this theory is to be regarded as complementary to that of gravity or supergravity (Scherk 
1978), where the extension is space-like. 

For simplicity we will consider gauging SU(211) in six dimensions, with metric 
(+---++), the extra two dimensions both being time-like. We will denote by Greek 
letters p, v, . . . , ordinary space-time indices (with values from 0 to 3) and by Latin 
indices m, n, . . . the remainder. The graded algebra SU(2jl) (sometimes denoted a 
superalgebra) (Corwin et a1 1975, Freund and Kaplansky 1976) is the set of 3 x 3 
matrices A, with grading on the third row or column, which can be represented as 

c )  where a and c are Hermitian (2 X 2 )  and (1 X l ) ,  respectively, and TrGA = 
Tr a -Tr c = 0. We define (0" :) to be the even component A. of A, (if+ $) to be the 
odd component A I  of A.  This set of matrices is closed under the bracket operation 

ib 

[A,BI=[AO,BOI-+[&, B11-f[A1,Bol-+i[A1,Blli. (1) 

The gauge potential AM will transform under U E SU(211) as 

and the field strength FMN is defined as 

We note that the infinitesimal gauge transformation (2) is taken to be ungraded, so that 
&(AB)  = (S,A)B +A(S,B) and not &(AB)  = (6,A)B + (-l)""A(S,B), where (-1)"" = 
-1 only if A and U are both odd and is one otherwise. The gauging (2) differs from that 
considered in the mathematical literature under the name of a graded derivation 
(Corwin et a1 1975, Freund and Kaplansky 1976); it is shown elsewhere (Pickup and 
Taylor 1979) that graded gauging leads to the same results. 

The expected extension of the quadratic Yang-Mills Lagrangian to the graded case 
would be (Corwin eta1 1975, Freund and Kaplansky 1976) TrG(FMNFMN). However, 
this is physically unacceptable due to the negative energies associated with the U( 1) 
gauge fields. It is thus (Pickup and Taylor 1980) necessary to attempt to use the 
ordinary trace to obtain a gauge-invariant Lagrangian. Due to the non-Hermiticity of 
FMN the most immediate such object would be Tr(FMNFMN'). This was considered 
earlier (Taylor 1979b) for the metric (+-----) and found satisfactory except for the 
(mass)2 disease, so requiring analytic continuation in that variable, as mentioned above. 
In this way the related gauge fields were taken out of SU(211) and into Sg1(2/1) so that 
the theory became a gauge theory of the larger group. This difficulty could have been 
avoided by using Tr(FMNFMN) except that now the Higgs fields have the wrong sign for 
their kinetic energy term. Only by choosing the extended space-time metric 
(+---++) could these terms be made physical. 
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To see this in detail we analyse the restrictions imposed on AM in order for 
L = Tr(ewNFMN) to be invariant under (2). It is straightforward to show that, under 
(2), 

&FMN =i[FMN, Ul+i{[AN, aMUIf[’3MU, ANI} 

+{[[AM, ANI, uI-[[AM, U], ANI-LAM, AN, U]]). (4) 

[ANI, ~ M U ~ I +  = 0. ( 5 )  

Invariance of L under (4) requires vanishing of the second term in (4): 

For M, N G 3 we see that Agl = 0 for a general space-time-dependent gauge trans- 
formation U. We make (5)  vanish for M > 3 by choosing dmul = 0, and so have triviality 
of the gauge transformation, and so of the gauge potential, in the extra dimensions. In 
order to remove ( 5 )  when N > 3, M s 3 we must analyse that part of S,L arising from 
this term in detail. Since (5) is even, we must consider Tr([A,,l, d,ul]+FcLnO). For this to 
vanish we require FFn0 = 0, which is true only if AnO is a constant which commutes with 
all tke even generators of SU(211) (so commuting with AcLo). Therefore An0aAs1 = 
(1 /J3)  diag(1, 1 ,2) .  

When U is even the double commutator terms in (4) vanish due to suitable graded 
Jacobi identities, so that in this case S,L = Tr[FMNFMN, uO]- = 0. The same occurs for 
odd U and M, N i 3, M i 3, N > 3 or M > 3, N c 3 (noting in those latter cases that 
FMNo = 0, so only dulFMN1 can contribute to S,,L). Thus we consider solely odd U and 
M, N > 3 in S,L. In this case it can be shown, after some algebraic manipulation, that 

Tr(FmnF mn 1 
= 2Tr u~{[[[Aml, AiillAmlI+Am~]+ + [[[Ami, Anll+AmlI+An~I- 

We see that 

A41 = -A51 A40 = A50 or A4l=A51 A40 = -ASO (7) 

gives 

(8) 
A more detailed analysis, similar to that in Taylor (1979b), indicates that (7) is very 
likely the only non-trivial solution of (8), though a rigorous proof of this is still lacking. 

Summing our results so far, we can only achieve a gauge-invariant Lagrangian L 
provided we take (Fairlie 1979, Taylor 1979a, b, Dondi and Jarvis 1979) 

Sul Tr(F44F44+ F5sF55) = 0 = Sul Tr(F45F45 + F54FS4). 

(9) A, =-(A,‘A~ g + B , A ~ ~ )  
2 

where 44 = - - c $ ~  is an iso-doublet under the SU(2) sub-algebra, i = 1 , 2 , 3  and M is a real 
constant. The second solution (7) gives identical physical results, so we do not consider 
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it further. We then have 

where FLY(A), F,,(B) are the usual Yang-Mills fields constructed from ALAi and B,, 
respectively, and D, is the gauge-covariant derivative with respect to A ,  in (9). Then, 
using the metric signature (+---++), 

- 4 g 2 [ ( 4 W 2  44*(4+4)1. (14) 

This Lagrangian has correct signs for the Higgs scalar kinetic energy terms, their 
self-interaction, and their mass term to produce spontaneous symmetry breaking 
leading to (4)o # 0. The last of these signs can onlybe correct if L and not Tr(F,,,,F:,) is 
considered, and then the first of these signs can only arise by choice of the metric 
(+-----ti-) and not the previously used signature (Fairlie 1979, Taylor 1979a, b, Dondi 
and Jarvis 1979) (+----- ). Since the bose sector of the standard electroweak theory 
of SU(2) x U(1) has now been incorporated with 8, = 30", this justifies our claim that 
the extra dimensions must be time-like. 

We note in addition the prediction (Taylor 1979a) 

m H =  2m,- 152 GeV. (15) 

When we turn to the inclusion of leptons we may follow the use (Taylor 1979a) of 
two extended time-like dimensions for each new lepton; the lepton Lagrangian must be 
chosen carefully to preserve gauge invariance. Thus we define the gauge trans- 
formation of the lepton spinor $ with three 8-component spinors to be 

S,$ = -iu$. (16) 

With the gauge-covariant derivative Om$ = d m $  +iAM$, it can be shown readily that 

S(&D.wrM$)=--2i&y,+i d,$+Jrm([Ami, ~lI-*i[Aml, ~ 1 1 + ) $  (17) 

where T M  are the appropriately extended Dirac matrices; we take r, = y,, r 4 - - 1y5T1,  ' 

I?s = i ~ 5 ~ 2 ,  4 = $ ' f yo .  We see that the first term on the RHS of (17) is only zero provided 
the grading is defined by chirality, since then u1 will only have non-zero matrix elements 
between spinors of different chirality. The second term on the RHS of (17) is then zero 
for the same reason. Thus L1  = ii(&DMr'+) is a possible Lagrangian to describe 
leptons. We note that it comprises the usual expression $i(Jy"D,$) and the further 
term --t-$F"A,$. The first of these ternis produces the usual kinetic energy and 
SU(2) x U(1) interactions for the lepton if $ = (L1, Rl) ,  (L2R2),  where (Ll ,  R,) = 
e0ly5(L, R) ,  and L is a left-handed doublet under SU(2), R is a right-handed singlet. The 
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remaining term has the value -$&5(~1A4+ T2A5)$. The purely quadratic term of this 
can be evaluated with 

o eio 

to give the value 

[ L y , ~ c o s a 1 ~ - L ~ s i r i a l 2 1  (18) 

where (L,  R) = (vL, lL, l ~ )  where v is the neutrino associated with the lepton L. The 
choice a12 = a1 + az = ~ / 2  gives a mass to the lepton of value (Taylor 1979a) 

this giving the upper bound (Taylor 1979a) 

1 
mL s -M,. 

J 2  

We should remark here that the time-like character of the extra components 4 and 5 
is necessary to obtain a real mass for the lepton. In the case that the metric signature 
had been chosen (+----) it was necessary (Taylor 1979b) to modify the gauging (16) 
by replacing (Uo + U,) by (Uo + i VI) in order to obtain a real mass for the lepton. This 
was effectively gauging SU(3), so clearly was unsatisfactory in the present graded 
context. Indeed this feature can be regarded as a further reason for choosing extra 
components of space-time to be time-like. 

We can extend the theory to include further leptons by adding two new extra time 
dimensions for each new lepton (Taylor 1979a). Thus, for example, in eight dimensions 
with signature (+---++++)we have rM = RTgR-', where rF'= y,, rko)=iy5Tlp3, 
ri") = iy5p2p3, ria) = iy,pl, r$') = iy5p2, R = diag(eiu1l2, e-ia1/2, eia212, e-io2'2) in the 
T O P  space. The related gauge potentials can only have two non-zero extended 
components by extension of (7) ;  if these are taken as A4 and A5 then the same structure 
(9) and (10) results, as does (14). Now the mass term for the leptonic spinor with first 
eight components electronic, the next eight muonic, each eight components still being 
chirally graded triplets in SU(2/1), will be the sum of two terms (19) with phases a, and 
a, respectively. Presently there are three known leptons (a, p, T), hence the need for 
six extra time dimensions. 

This theory will fail if the upper bound (20) is violated in the future or if so is the 
prediction that the mass of the (b particle (Higgs particle) is - 150 GeV. Since the Higgs 
lepton coupling is suppressed by the usual factor (mt/m,) this prediction may be difficult 
to test. We note also that since the theory allows only one Higgs doublet there are no 
axions (Weinberg 1978, Wilczek 1978) present. The inclusion of hadrons in this theory 
is discussed elsewhere (Taylor 1979~) .  
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